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1 Introduction

Fully Homomorphic Encryption (FHE) was initially introduced as a con-
cept shortly after the development of the RSA cryptosystem, by Rivest et
al. [54]. Although long sought after, the first functional scheme was only
proposed over thirty years later by Gentry [34, 35] in 2009. The same
blueprint to construct FHE has been followed in all subsequent work.
First a scheme is constructed which can evaluate arithmetic circuits of
a limited depth, a so-called Somewhat Homomorphic Encryption (SHE)
scheme. If the complexity of the circuits which the SHE scheme can eval-
uate is slightly more than the complexity of the decryption circuit for
the SHE scheme, then (by placing a SHE encryption of the scheme’s pri-
vate key inside the public key) one can bootstrap the SHE scheme into a
FHE scheme. This bootstrapping operation is obtained by homomorphi-
cally evaluating the decryption circuit on input of the ciphertext to be
bootstrapped and the encryption of the secret key.
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However, in many application one can perform interesting privacy
preserving computations using only a Somewhat Homomorphic Encryp-
tion scheme. A European funded research project, HEAT (Homomorphic
Encryption Applications and Technology) was founded on the basis of
exploring such privacy preserving applications. In this note we explore
three such use cases, and the results obtained so far. In the first use case
we examine the prediction of house hold electricity consumption within
a Smart Grid infrastructure. Here the SHE scheme is used to evaluate
a special form of Neural Network which is particularly suited to homo-
morphic evaluation. In our second application we consider processing of
sensor data, and in particular satellite image data. For this application,
we consider in this paper the initial processing of the image homomor-
phically, with future work being focused on learning from the encrypted
image information. Finally, our third application looks at privacy preserv-
ing querying of crime data across national boundaries.

Before proceeding to our three use cases we outline, for the reader,
the three generations of SHE schemes which have so far been developed.
So far, there have been roughly three generations of SHE schemes. The
first generation consisted of Gentry’s original scheme, which was based
on having two representations of a basis of an ideal of a number field, one
easy basis and one hard basis. Gentry’s original scheme was simplified and
implemented in [36, 55], where the ideal was chosen to be principal, with
the easy basis being the principal generator and the hard basis being the
standard two element representation of this ideal. A second family in the
first generation of schemes was based on the approximate-GCD problem,
and consisted of so-called “integer based” schemes [26]. The first family in
the initial generation schemes is now considered insecure due to work of
Cramer et al [20], who extended the work of Campbell et al [13] to solve
the problem of finding small generators of principal ideals in cyclotomic
number fields. The second family, despite having numerous optimizations
applied to it - such as [16, 17] - is still not considered competitive compared
to the second generation schemes.

The second generation schemes were all based on the Learning With
Errors (LWE) problem, and its generalisation to rings (the Ring-LWE
problem) [10–12]. These schemes, generally referred to as BGV, were ex-
tensively optimized and implemented in a series of works by Gentry et
al [37–40], with an implementation (HELib) being given in [42]. A vari-
ant of BGV, called FV, was presented in [32] which embeds the message
into the upper bits of the underlying ring. The second generation systems
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also include those based on the NTRU assumption [9, 48], although the
security of these has since been called into question [3].

A third generation of schemes, based on standard LWE and encoding
messages via matrix eigenvalues, was presented in [41]. These schemes
have an interesting property of asymmetric noise growth; and as such have
given rise to some interesting theoretical applications and a fast method to
perform boostrapping [28]. However, they are particularly focused on bit-
encryption and hence evaluation of binary circuits on encrypted data; thus
in practice their efficiency does not match that of the second generation
schemes.

2 Privacy-preserving forecasting techniques for the smart
grid

Many countries around the world are investing significantly in smart grid
solutions with the prospect of having a positive impact on the sustain-
ability, reliability, flexibility, and efficiency of the power supply. The de-
ployment of smart meters is already well underway. For example, in the
United Kingdom the large energy suppliers were operating over 400, 000
smart gas and electricity meters, representing 0.9 percent of all the domes-
tic meters operated by the large suppliers in 2014 [24]. This development
is expected to intensify: the EU third energy package has as an objec-
tive to replace at least 80 percent of electricity meters with smart meters
by 2020 [31]. This change will fundamentally re-engineer the (electricity)
service industry.

The replacement of the classical meters with their smart variants has
advantages for both the consumer and industry. Some of the key bene-
fits include giving consumers the information to gain control over their
energy consumption, lowering the cost for managing the supply of en-
ergy across industry, and producing detailed consumption information
data from these smart meters which in turn enable a wide range of ser-
vices [24]. It is expected that the meters have an update rate of every 15
minutes at least [30]. When generating such a large amount of consumer
data a lot of privacy sensitive information is being disclosed. There are
various initiatives (e.g. [52, 56]) which stress and outline the importance of
having solutions for the smart grid where privacy protecting mechanisms
are already built-in by design.

One of the areas where industry would like to use this smart data is to
perform a forecast in order to buy energy generation contracts that cover
their clients. Moreover, to ensure network capacity the network operators
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require longer term forecasting [44, 56, 25]. This forecasting is typically
done by taking as input the (aggregated) data from a number of house-
holds. Based on this consumption data, together with other variables
such as the date and the current temperature and weather, a forecast
is computed to predict the short, medium, or long term consumption.
The energy providers or network operators only need to know the desired
forecast information based on their (potentially proprietary) forecasting
algorithm and model. There is no need to observe the individual consumer
data. The computation on this aggregated data could be performed in a
privacy-friendly manner: something which is currently not the case.

Additively homomorphic encryption schemes [51] and other tools have
been proposed to enhance the privacy in the setting of computing de-
tailed billing in the context of the smart grid [53, 50, 33, 46, 29, 45]. How-
ever, these approaches cannot be directly used in the setting of prediction
algorithms since these more complex algorithms need to compute both
additions and multiplications.

One popular class of prediction algorithms are based on artificial neu-
ral networks. However, one of the main ingredients in these forecasting
algorithms is the computation of the activation function: in practice a
sigmoid function is often used where the logistic function t 7→ 1/(1 + e−t)
is a popular choice. However, computing such a sigmoid function homo-
morphically is far from practical. One possible way to proceed is to sim-
ply ignore the sigmoidality requirement and to proceed with a truncated
Taylor series approximating this function or, more generally, to use any
non-linear polynomial function which is simple. This was investigated by
Livni et al. [47] regardless of cryptographic applications. Recent work by
Xie et al. [58] and Dowlin et al. [27] suggests to apply the same approach
to homomorphically encrypted data. However, by computing artificial
neural networks in this fashion it becomes just an organized manner of
fitting a polynomial through the given data set. We have studied [8] the
application of of Ivakhnenko’s group method of data handling (GMDH)
which was proposed back in 1970 [43].

The goal of GMDH is to approximate our target function f̃ : Rn0 → R
with a truncated Wiener series

a0 +

n0∑
i=1

aixi +

n0∑
i=1

n0∑
j=i

aijxixj +

n0∑
i=1

n0∑
j=i

n0∑
k=j

aijkxixjxk + . . . ,

which is also called a Kolmogorov-Gabor polynomial. The idea is to ap-
proach this by a finite superposition of quadratic polynomials

νij : R2 → R : (x, y) 7→ bij0 + bij1x+ bij2y + bij3xy + bij4x
2 + bij5y
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Fig. 1. Illustration of the Group Method of Data Handling.

as is illustrated in Figure 1. One can think of this as some sort of ANN,
and indeed the diagram is sometimes called a ‘polynomial neural network’.
As a first main difference, however, note that the wiring is incomplete:
each neuron has two inputs only.

The choice of the degree of the polynomial modulus used in all popular
Somewhat Homomorphic Encryption schemes is dominated by security
considerations, while with the current encoding techniques the correctness
requirement allows for much smaller values. We have introduced [7] a
generic encoding method using expansions with respect to a non-integral
base, which exploits this large degree at the benefit of reducing the growth
of the coefficients when performing homomorphic operations. This allows
one to choose a smaller plaintext coefficient modulus which results in a
significant reduction of the running time.

Let us recall and summarize the exact forecasting setting and the pa-
rameters we selected for the implementation. It is our goal to predict the
energy consumption for the next half hour of an apartment complex of 10
households while not revealing any energy consumption information to
the party computing on this data. In order to assess the practical perfor-
mance we implemented this privacy-preserving homomorphic forecasting
approach. Our implementation uses the FV-NFLlib software library [22]
which implements the FV homomorphic encryption scheme which in turn
uses the NFLlib software library (as described in [49] and released at [23])
for computing polynomial arithmetic. Our benchmark results are obtained
when running the implementation on an average laptop equipped with an
Intel Core i5-3427U CPU (running at 1.80GHz).

We used the data that was collected through the Irish smart metering
electricity customer behaviour trials [15] which ran in 2009 and 2010 with
over 5,000 Irish homes and businesses participating. Our GMDH network
of three hidden layers with 8, 4 and 2 nodes, respectively. As input layer
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a set of 51 nodes is used, where 48 nodes represent the half hour mea-
surements that were made during the previous 24 hours. The remaining
3 inputs correspond to the temperature, the month, and the day of the
week. The single output node then returns the predicted electricity con-
sumption for the next half hour. Each node performs 8 multiplications,
since there are at most 15 nodes being evaluated this means computing
120 multiplications and 75 additions homomorphically. The entire run-
ning time of our GMDH implementation to forecast on encrypted data in
combination with our new encoding scheme the homomorphic forecast-
ing can be done in only 2.5 seconds: making this approach suitable for
industrial applications in the smart grid.

3 Privacy-preserving processing on sensor data

Signal and image processing algorithms are used widely, to improve the
quality of sensor data, perform object detection and classification, and
many other applications. The processing of sensor data quite clearly gives
rise to concerns about privacy, and access to the data needs to be con-
trolled. As an additional concern, those creating the processing algorithms
often invest significant resources to do so, and wish to protect sensitive
parameter details of the algorithms as their Intellectual Property. These
motivate the need for being able to perform signal and image processing
on encrypted data.

As a specific example, consider imaging satellites. Due to the nature
of satellite operations, current systems tend to be owned and operated by
one organization and built for a particular purpose. The development and
operation of satellite systems is not cheap, and cost pressures are starting
to demand the need for more flexibility in satellite missions. We are likely
to see the operational trend moving towards the repurposing of satellites
and sharing of infrastructure in the coming years. This change may enable
new entities, e.g. from academia or industry, to take advantage of available
satellite infrastructure. The satellite data may be sensitive in a number
of respects. At present, the sure way for an organisation to prevent data
leakage is to own and manage the entire system including the satellite
vehicle, its payload, the ground station, and the data processing facilities.
Homomorphic Encryption (HE) presents a technical opportunity by which
the aforementioned facilities might be shared between organizations that
do not necessarily trust each other, so reducing the cost of operating
satellite systems. In this context, encrypted data can be sent between
organizations, trusted or not, and remain secure.
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A key tool in signal and image processing is the Fourier Transform.
Consider the Discrete Fourier Transform (DFT) for a sequence of complex
numbers x0, x1, . . . , xN−1,

Xk =
N−1∑
n=0

xn · e−2·π·i·k·n/N , k = 0, . . . , N − 1.

This is a linear transform; it requires only the summation of sequence
samples and multiplication by scalar values e−2·p·i·k·n/N (sometimes called
twiddle factors). We usually implement this via a Fast Fourier Transform
(FFT) which reduces the computational complexity by the use of a few
mathematical tricks.

Previous work has considered how FFTs can be implemented on en-
crypted data [4, 5]. However, this work is limited when considering practi-
cal applications as it only considers one FFT and makes use of the Paillier
cryptosystem [51] that can only perform ciphertext additions and not ci-
phertext multiplications. For example, consider the Single-Look Synthetic
Aperture Radar (SLSAR) processing chain shown in Figure 2. SLSAR is
used to turn raw radar sensor data into images. It involves a series of
operations, including FFTs, Inverse FFTs (IFFT) and Hadamard multi-
plication of matrices. Some of these multiplications may require sensitive
inputs, to protect details of the algorithm. More complex algorithms, such
as Multi-Look SAR which combines multiple sensor images, require addi-
tional ciphertext multiplications. These require a Somewhat Homomor-
phic Encryption (SHE) scheme that allows a limited number of ciphertext
multiplications. This led authors to examine how to perform FFT oper-
ations using Somewhat Homomorphic Encryption, see [14] and [19].

FFT in range

A

?
-⊕-

FFT in azimuth

B

?
-⊕-

IFFT in range

C

?
-⊕-

IFFT in azimuth

Fig. 2. SLSAR algorithm block diagram. The filter matrices A, B and C are multiplied
point-wise with the output of the previous FFT

In [18] we introduce a new method to homomorphically compute on
complex numbers using a Somewhat Homomorphic Encryption scheme.
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For the evaluation of the FFT pipeline above our methods can also dis-
pense with the associated approximations of complex numbers, and we
find we can evaluate the DFT pipeline using exact operations on encod-
ings of exact complex numbers. This methodology enables us to achieve
a considerable improvement in the ability to homomorphically evaluate
a DFT. Notice that despite the DFT being linear, the large number of
additions and scalar multiplications means that the often heard mantra of
“only multiplications matter” does not apply. We need to be careful not
only of the growth of the coefficients of the ring elements which encode
our values, but also of the homomorphic noise.

We are able to evaluate a single iteration of a FFT-Hadamard-iFFT
pipeline of input size 8192 elements, as opposed to 1024 elements for
[14] and [19]. In terms of latency we were able to evaluate a pipeline
for 256 elements in 9.43 seconds, compared to a latency of 581 minutes
for [19] and 87 minutes for [14]. Our amortized times are however much
worse; since our method does not allow packing our amortized time for
the same calculation is still 9.43 seconds, compared to 89.4 seconds for
[19] and 0.31 seconds for [14]. So whilst we obtain faster latency (and
exact computations), for high throughput calculations the method of [14]
is still to be preferred.

More complex applications require even more complex processing chains.
Our current work is considering how machine learning algorithms can be
implemented on encrypted data as part of such processing chains, for
image classification for example.

4 Privacy preserving processing of crime related data

Organized Crime is becoming increasingly diverse in its method, group
structures and impact on society. A new criminal landscape is emerg-
ing, marked increasingly by highly mobile and flexible groups operating
in multiple jurisdictions and criminal sectors. Internet and mobile tech-
nologies have emerged as key facilitators for organized crime. Although
electronic communications have made organized crime activities less vis-
ible to authorities targeting criminal assets, the increasing usage of the
Internet and of mobile communications offers new opportunities to inves-
tigators to detect signals and to pre-empt organized crime activities.

However, police forces have to comply with the law and democracy
protects the rights of citizens and in particular the privacy of their per-
sonal data. Wide-range scanning for weak organized crime (OC) signals
is typically incompatible with the legal constraints because it would un-
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duly give power to the executive arm and thereby limit personal freedom.
Such data privacy rules are even more stringent when it comes to the
collaboration between investigators from different agencies and countries.
There is then a conflict between safety and privacy and the fundamental
paradox that arises from this picture is that protecting citizens’ rights
makes it more difficult to protect citizens’ rights.

The cross-border collaboration between law enforcement agencies is
already regulated by a EU framework that was introduced in 2008 by EU
Council Decision 2008/615/JHA [1] and EU Council Decision 2008/616/JHA
[2], which applied the previously established Prum Convention [57] to all
the member states. These decisions describe a framework in which mem-
ber states can grant one another access rights to their automated DNA
analysis files, automated dactyloscopic identification systems or vehicle
registration data via a two-step process: a hit/no-hit system (whose re-
sult should be available in less than 15 minutes) followed by a request for
specific related personal data.

The current framework still presents issues regarding the protection
of citizens’ privacy; for example the country that receives a query can
learn the query itself. At the time the decisions were produced, several
cryptographic primitives like Fully Homomorphic Encryption (FHE) were
not known to be possible, so the results that can be achieved now are more
sophisticated than what was imaginable in 2008 and the privacy model
can be considerably strengthened.

As in [21], we assume a party, say France (FR), wants to query a
database held by another party, say Germany (DE); furthermore, we as-
sume that both countries recognize the authority of a trusted party, say
a Judge (JU). Then the solution that we propose achieves the following
privacy/security goals:

– FR learns no more than whether there is a hit/no-hit on the data XXX
and, if authorized by JU, which records match XXX;

– DE does not learn anything (not even XXX), but the possible data it
would legally be obliged to provide after a successful match;

– JU learns the query XXX but not the associated data, even if he allows
the query.

In our architecture, DE is the only one who controls its database,
and sends an (encrypted) inverted index of the database to an untrusted
party (e.g. the Cloud). This step only happens once at the beginning,
and each time the database needs to be updated. If we denote by PRF a
pseudo random function, in a first step DE sends to the Cloud a database
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containing tuples of the form

( PRF(“DNAD19S433 = 7, 8”), EnckDE
(I) )

where I is the set of indices in the database of the individuals for which
the DNA marker D19S433 is equal to 7, 8, encrypted with a key kDE only
known to DE.

Then in the second step, FR and DE can obliviously compute the
values of the form

PRF(“DNAD19S433 = 7, 8”)

corresponding to the search query FR wants to perform, similarly to what
was shown in [21].

In a third step, if JU accepts FR’s query; he gets the encrypted set
of indices corresponding to the tokens FR and DE computed; homomor-
phically performs the required computation if needed – an intersection of
the sets of indices if the query is conjunctive, a union of the sets if it is a
disjunctive query –; signs the resulting encrypted set of indices with his
secret key kJU sends;(

EnckDE
(I), SgnkJU (EnckDE

(I))
)

to FR.
In a final step, FR forwards the data to DE, who first checks JU’s

signature and, if it is correct, decrypts the set of indices I and sends the
corresponding data to FR.

In order to allow FR to perform conjunctive and disjunctive queries on
DE’s database, we need to use an encryption scheme with homomorphic
properties.

We now turn to specifying the homomorphic encryption scheme EnckDE
(I)

used to encrypt a set of indices I under the secret key kDE. In order to
encrypt the set of indices I ⊂ Z, we first encode the indices in a polyno-
mial

p =
∏
i∈I

(x− i) ,

of degree card(I), the cardinality of I. Then, we encrypt independently
the coefficients pj of p =

∑
pjx

j , and we define

EnckDE
(I) =

(
EnckDE

(p0), . . . , EnckDE
(pcard(I)−1)

)
.

Note that the integer roots of the polynomial p match exactly the set
I and the encrypted polynomials do not leak anything thanks to the
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semantic security of the encryption scheme. A solution to ensure secrecy
for several queries is defined in [6].

When performing a disjunctive search query (union), one must then
compute homomorphically the coefficients of the product polynomial

p(x) = p(1)(x) · p(2)(x)

where I1 and I2 are the roots of p(1)(x) and p(2)(x) respectively; then the
roots of p(x) are exactly I1

⋃
I2 as required. Since the coefficients of p(x)

are quadratic in the coefficients of p(1)(x) and p(2)(x), the homomorphic
encryption scheme must allow for at least one multiplication.

On the other hand, when performing a conjunctive search query (in-
tersection), one chooses two random polynomials r1(x) of degree d2 − 1
and r2(x) of degree d1−1 where di is the degree of p(i)(x). Then the party
homomorphically computes the coefficients of

p(x) = p(1)(x) · r1(x) + p(2)(x) · r2(x)

We stress that this operation can introduce “parasitic” roots (i.e. false
positives) but the probability of such an event can be made arbitrarily
small, e.g. by setting the parameters to make it negligible or, more simply,
by repeating the operation multiple times with different random polyno-
mials and then taking the intersection of the resulting sets of roots for
p(x). We also note that the coefficients of r1(x) and r2(x) need not be
encrypted, so a linearly homomorphic encryption scheme is sufficient to
support conjunctive queries. Finally, we stress that, in order to support
more complex (ideally, arbitrary) queries, we need an encryption scheme
that supports arbitrarily many additions and multiplications, i.e. a fully
homomorphic encryption scheme.

For our implementation, we extended the DGHV scheme [26], as de-
scribed below.

The DGHV scheme with message space Zq. Given the security parameter
λ, all the other parameters are chosen as a function of λ, i.e. η = η(λ), γ =
γ(λ), ρ = ρ(λ).
KeyGen(1λ). Generate a random prime integer p of size η bits. Generate
a random prime s0 of size γ − η bits and let x0 = s0 · p. Let pk = x0 and
sk = p.

Encrypt(sk,m ∈ Zq). Generate a random postive integer s of γ − η bits,
a random integer r in (−2ρ, 2ρ) and output the ciphertext:

c = s · p+ r · q +m
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Add(c1, c2, pk). Return c← c1 + c2 mod x0.

Mult(c1, c2, pk). Return c← c1 · c2 mod x0.

Decrypt(sk, c). Output m← (c mod p) mod q.

We also implemented the proposed solution on realistically-sized databases
and we ran it on an average machine. The timing performance is well
within the limit set by the EU Council Decisions [1, 2] and we thus obtain
the first usable implementation of the Automated Detection of Organized
Crime (ADOC) framework with an enhanced privacy model.
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encryption. In J. Cuéllar, J. Lopez, G. Barthe, and A. Pretschner, editors, STM,
volume 6710 of LNCS, pages 226–238. Springer, 2011.

34. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Uni-
versity, 2009. http://crypto.stanford.edu/craig.

35. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher,
editor, STOC, pages 169–178. ACM, 2009.

36. C. Gentry and S. Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In EUROCRYPT, volume 6632 of Lecture Notes in Computer Science,
pages 129–148. Springer, 2011.

37. C. Gentry, S. Halevi, C. Peikert, and N. P. Smart. Ring switching in bgv-style
homomorphic encryption. In I. Visconti and R. D. Prisco, editors, Security and
Cryptography for Networks - 8th International Conference, SCN 2012, Amalfi,
Italy, September 5-7, 2012. Proceedings, volume 7485 of Lecture Notes in Computer
Science, pages 19–37. Springer, 2012.

14



38. C. Gentry, S. Halevi, and N. Smart. Fully homomorphic encryption with polylog
overhead. In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science,
pages 465–482. Springer, 2012.

39. C. Gentry, S. Halevi, and N. P. Smart. Better bootstrapping in fully homomorphic
encryption. In M. Fischlin, J. A. Buchmann, and M. Manulis, editors, Public Key
Cryptography - PKC 2012 - 15th International Conference on Practice and Theory
in Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings,
volume 7293 of Lecture Notes in Computer Science, pages 1–16. Springer, 2012.

40. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit.
In R. Safavi-Naini and R. Canetti, editors, Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-
23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Science, pages
850–867. Springer, 2012.

41. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In R. Canetti
and J. A. Garay, editors, Advances in Cryptology - CRYPTO 2013, Part I, pages
75–92. Springer, 2013.

42. S. Halevi and V. Shoup. Design and implementation of a homomorphic-encryption
library. Manuscript, available at http://people.csail.mit.edu/shaih/pubs/he-
library.pdf, Accessed January 2015.

43. A. Ivakhnenko. Heuristic self-organization in problems of engineering cybernetics.
Automatica, 6(2):207 – 219, 1970.

44. M. Jawurek, F. Kerschbaum, and G. Danezis. Privacy technologies for smart
grids - a survey of options. Technical Report MSR-TR-2012-119, November 2012.
http://research.microsoft.com/apps/pubs/default.aspx?id=178055.

45. K. Kursawe, G. Danezis, and M. Kohlweiss. Privacy-friendly aggregation for the
smart-grid. In S. Fischer-Hübner and N. Hopper, editors, Privacy Enhancing Tech-
nologies – PETS, volume 6794 of LNCS, pages 175–191. Springer, 2011.

46. F. Li, B. Luo, and P. Liu. Secure information aggregation for smart grids using
homomorphic encryption. In Smart Grid Comm., pages 327–332. IEEE, 2010.

47. R. Livni, S. Shalev-Shwartz, and O. Shamir. On the computational efficiency of
training neural networks. In Advances in Neural Information Processing Systems,
pages 855–863, 2014.
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