Fast Homomorphic Evaluation of Deep Discretized Neural Networks

Florian Bourse M

<u>Michele Minelli</u>

Matthias Minihold

Pascal Paillier

ENS, CNRS, PSL Research University, INRIA (Work done while visiting CryptoExperts)

CRYPTO 2018 – UCSB, Santa Barbara

Possible solution: FHE.

Possible solution: FHE.

Possible solution: FHE.

Possible solution: FHE.

- Privacy data is encrypted (both input and output)
- **X** Efficiency main issue with FHE-based solutions

Possible solution: FHE.

- Privacy data is encrypted (both input and output)
- **X** Efficiency main issue with FHE-based solutions

Goal of this work: homomorphic evaluation of trained networks.

(Very quick) refresher on neural networks

(Very quick) refresher on neural networks

Computation for every neuron:

(Very quick) refresher on neural networks

Computation for every neuron:

where *f* is an *activation function*.

Dataset: MNIST ($60\,000$ training img + $10\,000$ test img).

Cryptonets [DGBL⁺16]

Cryptonets $[DGBL^+16]$

✓ Achieves blind, non-interactive classification

Cryptonets $[DGBL^+16]$

- ✓ Achieves blind, non-interactive classification
- ✓ Near state-of-the-art accuracy (98.95%)

Cryptonets $[DGBL^+16]$

- ✓ Achieves blind, non-interactive classification
- ✓ Near state-of-the-art accuracy (98.95%)
- **X** Replaces sigmoidal activ. functions with low-degree $f(x) = x^2$

Cryptonets [DGBL⁺16]

- ✓ Achieves blind, non-interactive classification
- ✓ Near state-of-the-art accuracy (98.95%)
- $\pmb{\mathsf{X}}$ Replaces sigmoidal activ. functions with low-degree $f(x)=x^2$
- $\pmb{\mathsf{X}}$ Uses SHE \implies parameters have to be chosen at setup time

Cryptonets [DGBL⁺16]

- ✓ Achieves blind, non-interactive classification
- ✓ Near state-of-the-art accuracy (98.95%)
- **X** Replaces sigmoidal activ. functions with low-degree $f(x) = x^2$
- $\pmb{\mathsf{X}}$ Uses SHE \implies parameters have to be chosen at setup time

Main limitation

The computation at neuron level depends on the total multiplicative depth of the network

 \implies bad for deep networks!

Cryptonets [DGBL⁺16]

- ✓ Achieves blind, non-interactive classification
- ✓ Near state-of-the-art accuracy (98.95%)
- **X** Replaces sigmoidal activ. functions with low-degree $f(x) = x^2$
- $\pmb{\mathsf{X}}$ Uses SHE \implies parameters have to be chosen at setup time

Main limitation

The computation at neuron level depends on the total multiplicative depth of the network \implies bad for deep networks!

Goal: make the computation scale-invariant \implies bootstrapping.

We want to homomorphically compute the multisum

 $\sum_{i} w_i x_i$

We want to homomorphically compute the multisum

Given
$$w_1, \ldots, w_p$$
 and $\mathsf{Enc}(x_1), \ldots, \mathsf{Enc}(x_p)$, do

$$\sum_{i} w_{i} \cdot \mathsf{Enc}\left(x_{i}\right)$$

 $\sum w_i x_i$

We want to homomorphically compute the multisum

Given
$$w_1, \ldots, w_p$$
 and $Enc(x_1), \ldots, Enc(x_p)$, do

$$\sum_{i} w_{i} \cdot \mathsf{Enc}\left(x_{i}\right)$$

 $\sum w_i x_i$

Proceed with caution

In order to maintain correctness, we need $w_i \in \mathbb{Z}$

We want to homomorphically compute the multisum

Given
$$w_1, \ldots, w_p$$
 and $Enc(x_1), \ldots, Enc(x_p)$, do

$$\sum_{i} w_{i} \cdot \mathsf{Enc}\left(x_{i}\right)$$

 $\sum w_i x_i$

Proceed with caution

In order to maintain correctness, we need $w_i \in \mathbb{Z} \implies$ trade-off efficiency vs. accuracy!

Discretized neural networks (DiNNs)

Goal: FHE-friendly model of neural network.

Definition

A DiNN is a neural network whose inputs are integer values in $\{-I, \ldots, I\}$, and whose weights are integer values in $\{-W, \ldots, W\}$, for some $I, W \in \mathbb{N}$.

For every activated neuron of the network, the activation function maps the multisum to integer values in $\{-I, \ldots, I\}$.

Definition

A DiNN is a neural network whose inputs are integer values in $\{-I, \ldots, I\}$, and whose weights are integer values in $\{-W, \ldots, W\}$, for some $I, W \in \mathbb{N}$.

For every activated neuron of the network, the activation function maps the multisum to integer values in $\{-I, \ldots, I\}$.

• Not as restrictive as it seems: e.g., binarized NNs;

Definition

A DiNN is a neural network whose inputs are integer values in $\{-I, \ldots, I\}$, and whose weights are integer values in $\{-W, \ldots, W\}$, for some $I, W \in \mathbb{N}$.

For every activated neuron of the network, the activation function maps the multisum to integer values in $\{-I, \ldots, I\}$.

- Not as restrictive as it seems: e.g., binarized NNs;
- Trade-off between size and performance;

Definition

A DiNN is a neural network whose inputs are integer values in $\{-I, \ldots, I\}$, and whose weights are integer values in $\{-W, \ldots, W\}$, for some $I, W \in \mathbb{N}$.

For every activated neuron of the network, the activation function maps the multisum to integer values in $\{-I, \ldots, I\}$.

- Not as restrictive as it seems: e.g., binarized NNs;
- Trade-off between size and performance;
- (A basic) conversion is extremely easy.

Homomorphic evaluation of a DiNN

O Evaluate the multisum: easy – just need a linearly hom. scheme

$$\sum_{i} w_{i} \cdot \mathsf{Enc}\left(x_{i}\right) = \mathsf{Enc}\left(\sum_{i} w_{i} x_{i}\right)$$

Homomorphic evaluation of a DiNN

- **O** Evaluate the multisum: easy just need a linearly hom. scheme
- **②** Apply the activation function: depends on the function

Enc
$$\left(f\left(\sum_{i} w_{i} x_{i}\right)\right)$$

Homomorphic evaluation of a DiNN

- **O** Evaluate the multisum: easy just need a linearly hom. scheme
- **②** Apply the activation function: depends on the function
- Bootstrap: can be costly

$$\operatorname{Enc}^{*}\left(f\left(\sum_{i}w_{i}x_{i}\right)\right)$$

- **O** Evaluate the multisum: easy just need a linearly hom. scheme
- ② Apply the activation function: depends on the function
- Bootstrap: can be costly
- **9** Repeat for all the layers

$$\operatorname{Enc}^{*}\left(f\left(\sum_{i}w_{i}x_{i}\right)\right)$$

- Evaluate the multisum: easy just need a linearly hom. scheme
- Apply the activation function: depends on the function
- **Bootstrap:** can be costly
- Repeat for all the layers

Issues:

• Choose the message space: guess, statistics, or worst-case

- Evaluate the multisum: easy just need a linearly hom. scheme
- Apply the activation function: depends on the function
- **Bootstrap:** can be costly
- Repeat for all the layers

Issues:

- Choose the message space: guess, statistics, or worst-case
- The noise grows: need to start from a very small noise

- Evaluate the multisum: easy just need a linearly hom. scheme
- ② Apply the activation function: depends on the function
- **Bootstrap:** can be costly
- Repeat for all the layers

Issues:

- Choose the message space: guess, statistics, or worst-case
- The noise grows: need to start from a very small noise
- How do we apply the activation function homomorphically?

Combine bootstrapping & activation function:

$\mathsf{Enc}\left(x\right)\to\mathsf{Enc}^{*}\left(f\left(x\right)\right)$

Basic idea: activate during bootstrapping

Michele Minelli

Basic idea: activate during bootstrapping

Two steps:

• Compute the multisum $\sum_i w_i x_i$

Basic idea: activate during bootstrapping

Two steps:

- Compute the multisum $\sum_i w_i x_i$
- Ø Bootstrap to the activated value

TFHE: a framework for faster bootstrapping [CGGI16,CGGI17]

Basic assumption: learning with errors (LWE) over the torus

 $(\mathbf{a}, \ \boldsymbol{b} = \langle \mathbf{s}, \mathbf{a} \rangle + \boldsymbol{e} \mod 1) \ \stackrel{\boldsymbol{c}}{\approx} \ (\mathbf{a}, \ \mathbf{u}), \qquad \boldsymbol{e} \leftarrow \chi_{\alpha}, \ \mathbf{s} \leftarrow \$ \{0, 1\}^n, \ \mathbf{a}, \mathbf{u} \leftarrow \$ \mathbb{T}^n.$

 $\mathbb{T} \coloneqq \mathbb{R}/\mathbb{Z}$

TFHE: a framework for faster bootstrapping [CGGI16,CGGI17]

Basic assumption: learning with errors (LWE) over the torus

 $(\mathbf{a}, \ b = \langle \mathbf{s}, \mathbf{a} \rangle + e \mod 1) \stackrel{c}{\approx} (\mathbf{a}, \ \mathbf{u}), \qquad e \leftarrow \chi_{\alpha}, \ \mathbf{s} \leftarrow \$ \{0, 1\}^n, \ \mathbf{a}, \mathbf{u} \leftarrow \$ \mathbb{T}^n.$

Scheme	Message	Ciphertext
LWE	scalar	(n+1) scalars
TLWE	polynomial	(k+1) polynomials

 $\mathbb{T} \coloneqq \mathbb{R}/\mathbb{Z}$

TFHE: a framework for faster bootstrapping [CGGI16,CGGI17]

Basic assumption: learning with errors (LWE) over the torus

 $(\mathbf{a}, \ \boldsymbol{b} = \langle \mathbf{s}, \mathbf{a} \rangle + \boldsymbol{e} \mod 1) \stackrel{\boldsymbol{c}}{\approx} (\mathbf{a}, \ \mathbf{u}), \qquad \boldsymbol{e} \leftarrow \chi_{\alpha}, \ \mathbf{s} \leftarrow \$ \{0, 1\}^n, \ \mathbf{a}, \mathbf{u} \leftarrow \$ \mathbb{T}^n.$

Scheme	Message	Ciphertext
LWE	scalar	(n+1) scalars
TLWE	polynomial	(k+1) polynomials

Overview of the bootstrapping procedure:

- Hom. compute $X^{b-\langle \mathbf{s}, \mathbf{a} \rangle}$: spin the wheel
- Pick the ciphertext pointed to by the arrow
- Switch back to the original key

 $\mathbb{T} \coloneqq \mathbb{R}/\mathbb{Z}$

Our activation function

We focus on $f(x) = \operatorname{sign}(x)$.

Our activation function

We focus on $f(x) = \operatorname{sign}(x)$.

Michele Minelli

Reducing bandwidth usage

Oynamically changing the message space

Reducing bandwidth usage

Oynamically changing the message space

Standard packing technique: encrypt a polynomial instead of a scalar.

$$\mathit{ct} = \mathsf{TLWE}.\mathsf{Encrypt}\left(\sum_i \mathit{p}_i \, \mathit{X}^i
ight)$$

Reducing bandwidth usage

Oynamically changing the message space

Standard packing technique: encrypt a polynomial instead of a scalar.

$$ct = \mathsf{TLWE}.\mathsf{Encrypt}\left(\sum_{i} p_{i} X^{i}\right)$$

Same thing for weights (in the clear) in the first hidden layer: $w_{pol} := \sum_i w_i X^{-i}$.

Reducing bandwidth usage

Oynamically changing the message space

Standard packing technique: encrypt a polynomial instead of a scalar.

$$\mathit{ct} = \mathsf{TLWE}.\mathsf{Encrypt}\left(\sum_i \mathit{p}_i \, \mathit{X}^i
ight)$$

Same thing for weights (in the clear) in the first hidden layer: $w_{pol} := \sum_i w_i X^{-i}$.

The constant term of $ct \cdot w_{pol}$ is then $Enc(\sum_i w_i x_i)$.

Reducing bandwidth usage

Oynamically changing the message space

Michele Minelli 12 / 16

Reducing bandwidth usage

Oynamically changing the message space

Fact We can keep the msg space constant (bound on all multisums).

Reducing bandwidth usage

Oynamically changing the message space

Fact We can keep the msg space constant (bound on all multisums).

Better idea Change the msg space to reduce errors. Intuition: less slices when we do not need them.

Reducing bandwidth usage

Oynamically changing the message space

Fact We can keep the msg space constant (bound on all multisums).

Better idea Change the msg space to reduce errors. Intuition: less slices when we do not need them.

How Details in the paper. Quick intuition: change what we put in the wheel.

Reducing bandwidth usage

Oynamically changing the message space

Fact We can keep the msg space constant (bound on all multisums).

Better idea Change the msg space to reduce errors. Intuition: less slices when we do not need them.

How Details in the paper. Quick intuition: change what we put in the wheel.

Bottom line

We can start with any message space at encryption time, and change it dynamically during the bootstrapping.

Michele Minelli 13 / 16

Michele Minelli 13 / 16

Michele Minelli 13 / 16

Michele Minelli 13 / 16

PSI 😿

Michele Minelli

Michele Minelli

Michele Minelli

Overview of the process

Michele Minelli

Experimental results

On inputs in the clear

	Original NN (\mathbb{R})	DiNN + hard_sigmoid	DiNN + sign	
30 neurons	94.76%	93.76% (-1%)	93.55% (-1.21%)	
100 neurons	96.75%	96.62% (-0.13%)	96.43% (-0.32%)	

On encrypted inputs

	Accur.	Disag.	Wrong BS	Disag. (wrong BS)	Time
30 or	93.71%	273 (105–121)	3383/300000	196/273	0.515 s
30 un	93.46%	270 (119–110)	2912/300000	164/270	0.491 s
100 or	96.26%	127 (61–44)	9088/1000000	105/127	1.679 s
100 un	96.35%	150 (66–58)	7452/1000000	99/150	1.64 s

 ${\sf or}={\sf original}\qquad {\sf un}={\sf unfolded}$

Experimental results

On inputs in the clear

	Original NN (\mathbb{R})	DiNN + hard_sigmoid	DiNN + sign	
30 neurons	94.76%	93.76% (-1%)	93.55% (-1.21%)	
100 neurons	96.75%	96.62% (-0.13%)	96.43% (-0.32%)	

On encrypted inputs

	Accur.	Disag.	Wrong BS	Disag. (wrong BS)	Time
30 or	93.71%	273 (105–121)	3383/300000	196/273	0.515 s
30 un	93.46%	270 (119–110)	2912/300000	164/270	0.491 s
100 or	96.26%	127 (61–44)	9088/1000000	105/127	1.679 s
100 un	96.35%	150 (66–58)	7452/1000000	99/150	1.64 s

 ${\sf or}={\sf original}\qquad {\sf un}={\sf unfolded}$

	Neurons	Size of ct.	Accuracy	Time enc	Time eval	Time dec
FHE-DiNN 30	30	8.0 kB	93.71%	0.000168 s	0.49 s	0.0000106 s
FHE-DiNN 100	100	8.0 kB	96.35%	0.000168 s	1.65 s	0.0000106 s

	Neurons	Size of ct.	Accuracy	Time enc	Time eval	Time dec
FHE-DiNN 30	30	8.0 kB	93.71%	0.000168 s	0.49 s	0.0000106 s
FHE-DiNN 100	100	8.0 kB	96.35%	0.000168 s	1.65 s	0.0000106 s
		independent of the network				$\left[\right]$

CRYPTOEXPERTS

	Neurons	Size of ct.	Accuracy	Time enc	Time eval	Time dec
FHE-DiNN 30	30	8.0 kB	93.71%	0.000168 s	0.49 s	0.0000106 s
FHE-DiNN 100	100	8.0 kB	96.35%	0.000168 s	1.65 s	0.0000106 s
					scales linearly	

• Build better DiNNs: more attention to the conversion (+ retraining)

- Build better DiNNs: more attention to the conversion (+ retraining)
- Implement on GPU to have realistic timings

- Build better DiNNs: more attention to the conversion (+ retraining)
- Implement on GPU to have realistic timings
- More models (e.g., convolutional NNs) and machine learning problems

- Build better DiNNs: more attention to the conversion (+ retraining)
- Implement on GPU to have realistic timings
- More models (e.g., convolutional NNs) and machine learning problems

Research needed

We need a fast way to evaluate other, more complex, functions (e.g., max or ReLU^a).

 $\operatorname{\mathsf{PReLU}}(x) = \max(0, x)$

- Build better DiNNs: more attention to the conversion (+ retraining)
- Implement on GPU to have realistic timings
- More models (e.g., convolutional NNs) and machine learning problems

Research needed

We need a fast way to evaluate other, more complex, functions (e.g., max or ReLU^a).

 $\operatorname{\mathsf{PReLU}}(x) = \max(0, x)$

Thank you for your attention! Questions?

