# Fast Homomorphic Evaluation of Deep Discretized Neural Networks

Florian Bourse M

<u>Michele Minelli</u>

Matthias Minihold

Pascal Paillier

ENS, CNRS, PSL Research University, INRIA (Work done while visiting CryptoExperts)



CRYPTO 2018 – UCSB, Santa Barbara



Possible solution: FHE.









Possible solution: FHE.







Possible solution: FHE.







Possible solution: FHE.

- Privacy data is encrypted (both input and output)
- **X** Efficiency main issue with FHE-based solutions







Possible solution: FHE.

- Privacy data is encrypted (both input and output)
- **X** Efficiency main issue with FHE-based solutions

Goal of this work: homomorphic evaluation of trained networks.





### (Very quick) refresher on neural networks







### (Very quick) refresher on neural networks

Computation for every neuron:







### (Very quick) refresher on neural networks

Computation for every neuron:



where *f* is an *activation function*.





![](_page_13_Picture_2.jpeg)

![](_page_13_Picture_4.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_14_Picture_3.jpeg)

![](_page_14_Picture_6.jpeg)

![](_page_15_Figure_2.jpeg)

![](_page_15_Picture_3.jpeg)

![](_page_15_Picture_6.jpeg)

![](_page_16_Figure_2.jpeg)

Dataset: MNIST ( $60\,000$  training img +  $10\,000$  test img).

![](_page_16_Picture_4.jpeg)

![](_page_16_Picture_6.jpeg)

# **Cryptonets** [DGBL<sup>+</sup>16]

![](_page_17_Picture_2.jpeg)

![](_page_17_Picture_4.jpeg)

# Cryptonets $[DGBL^+16]$

✓ Achieves blind, non-interactive classification

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_5.jpeg)

# **Cryptonets** $[DGBL^+16]$

- ✓ Achieves blind, non-interactive classification
- ✓ Near state-of-the-art accuracy (98.95%)

![](_page_19_Picture_4.jpeg)

![](_page_19_Picture_6.jpeg)

# **Cryptonets** $[DGBL^+16]$

- ✓ Achieves blind, non-interactive classification
- ✓ Near state-of-the-art accuracy (98.95%)
- **X** Replaces sigmoidal activ. functions with low-degree  $f(x) = x^2$

![](_page_20_Picture_5.jpeg)

![](_page_20_Picture_7.jpeg)

# Cryptonets [DGBL<sup>+</sup>16]

- ✓ Achieves blind, non-interactive classification
- ✓ Near state-of-the-art accuracy (98.95%)
- $\pmb{\mathsf{X}}$  Replaces sigmoidal activ. functions with low-degree  $f(x)=x^2$
- $\pmb{\mathsf{X}}$  Uses SHE  $\implies$  parameters have to be chosen at setup time

![](_page_21_Picture_6.jpeg)

![](_page_21_Picture_8.jpeg)

# Cryptonets [DGBL<sup>+</sup>16]

- ✓ Achieves blind, non-interactive classification
- ✓ Near state-of-the-art accuracy (98.95%)
- **X** Replaces sigmoidal activ. functions with low-degree  $f(x) = x^2$
- $\pmb{\mathsf{X}}$  Uses SHE  $\implies$  parameters have to be chosen at setup time

#### Main limitation

The computation at neuron level depends on the total multiplicative depth of the network

 $\implies$  bad for deep networks!

![](_page_22_Picture_9.jpeg)

![](_page_22_Picture_11.jpeg)

# Cryptonets [DGBL<sup>+</sup>16]

- ✓ Achieves blind, non-interactive classification
- ✓ Near state-of-the-art accuracy (98.95%)
- **X** Replaces sigmoidal activ. functions with low-degree  $f(x) = x^2$
- $\pmb{\mathsf{X}}$  Uses SHE  $\implies$  parameters have to be chosen at setup time

#### Main limitation

The computation at neuron level depends on the total multiplicative depth of the network  $\implies$  bad for deep networks!

**Goal:** make the computation scale-invariant  $\implies$  bootstrapping.

![](_page_23_Picture_9.jpeg)

![](_page_23_Picture_11.jpeg)

We want to homomorphically compute the multisum

 $\sum_{i} w_i x_i$ 

![](_page_24_Picture_3.jpeg)

![](_page_24_Picture_5.jpeg)

We want to homomorphically compute the multisum

Given 
$$w_1, \ldots, w_p$$
 and  $\mathsf{Enc}(x_1), \ldots, \mathsf{Enc}(x_p)$ , do

$$\sum_{i} w_{i} \cdot \mathsf{Enc}\left(x_{i}\right)$$

 $\sum w_i x_i$ 

![](_page_25_Picture_4.jpeg)

![](_page_25_Picture_6.jpeg)

We want to homomorphically compute the multisum

Given 
$$w_1, \ldots, w_p$$
 and  $Enc(x_1), \ldots, Enc(x_p)$ , do

$$\sum_{i} w_{i} \cdot \mathsf{Enc}\left(x_{i}\right)$$

 $\sum w_i x_i$ 

#### Proceed with caution

In order to maintain correctness, we need  $w_i \in \mathbb{Z}$ 

![](_page_26_Picture_6.jpeg)

![](_page_26_Picture_8.jpeg)

We want to homomorphically compute the multisum

Given 
$$w_1, \ldots, w_p$$
 and  $Enc(x_1), \ldots, Enc(x_p)$ , do

$$\sum_{i} w_{i} \cdot \mathsf{Enc}\left(x_{i}\right)$$

 $\sum w_i x_i$ 

#### Proceed with caution

In order to maintain correctness, we need  $w_i \in \mathbb{Z} \implies$  trade-off efficiency vs. accuracy!

![](_page_27_Picture_6.jpeg)

![](_page_27_Picture_8.jpeg)

## Discretized neural networks (DiNNs)

Goal: FHE-friendly model of neural network.

![](_page_28_Picture_2.jpeg)

![](_page_28_Picture_4.jpeg)

### Definition

A DiNN is a neural network whose inputs are integer values in  $\{-I, \ldots, I\}$ , and whose weights are integer values in  $\{-W, \ldots, W\}$ , for some  $I, W \in \mathbb{N}$ .

For every activated neuron of the network, the activation function maps the multisum to integer values in  $\{-I, \ldots, I\}$ .

![](_page_29_Picture_5.jpeg)

![](_page_29_Picture_7.jpeg)

### Definition

A DiNN is a neural network whose inputs are integer values in  $\{-I, \ldots, I\}$ , and whose weights are integer values in  $\{-W, \ldots, W\}$ , for some  $I, W \in \mathbb{N}$ .

For every activated neuron of the network, the activation function maps the multisum to integer values in  $\{-I, \ldots, I\}$ .

• Not as restrictive as it seems: e.g., binarized NNs;

![](_page_30_Picture_6.jpeg)

![](_page_30_Picture_8.jpeg)

### Definition

A DiNN is a neural network whose inputs are integer values in  $\{-I, \ldots, I\}$ , and whose weights are integer values in  $\{-W, \ldots, W\}$ , for some  $I, W \in \mathbb{N}$ .

For every activated neuron of the network, the activation function maps the multisum to integer values in  $\{-I, \ldots, I\}$ .

- Not as restrictive as it seems: e.g., binarized NNs;
- Trade-off between size and performance;

![](_page_31_Picture_7.jpeg)

### Definition

A DiNN is a neural network whose inputs are integer values in  $\{-I, \ldots, I\}$ , and whose weights are integer values in  $\{-W, \ldots, W\}$ , for some  $I, W \in \mathbb{N}$ .

For every activated neuron of the network, the activation function maps the multisum to integer values in  $\{-I, \ldots, I\}$ .

- Not as restrictive as it seems: e.g., binarized NNs;
- Trade-off between size and performance;
- (A basic) conversion is extremely easy.

![](_page_32_Picture_8.jpeg)

![](_page_32_Picture_10.jpeg)

### Homomorphic evaluation of a DiNN

**O** Evaluate the multisum: easy – just need a linearly hom. scheme

$$\sum_{i} w_{i} \cdot \mathsf{Enc}\left(x_{i}\right) = \mathsf{Enc}\left(\sum_{i} w_{i} x_{i}\right)$$

![](_page_33_Picture_3.jpeg)

![](_page_33_Picture_6.jpeg)

### Homomorphic evaluation of a DiNN

- **O** Evaluate the multisum: easy just need a linearly hom. scheme
- **②** Apply the activation function: depends on the function

Enc 
$$\left(f\left(\sum_{i} w_{i} x_{i}\right)\right)$$

![](_page_34_Picture_4.jpeg)

![](_page_34_Picture_6.jpeg)

### Homomorphic evaluation of a DiNN

- **O** Evaluate the multisum: easy just need a linearly hom. scheme
- **②** Apply the activation function: depends on the function
- Bootstrap: can be costly

$$\operatorname{Enc}^{*}\left(f\left(\sum_{i}w_{i}x_{i}\right)\right)$$

![](_page_35_Picture_5.jpeg)

![](_page_35_Picture_7.jpeg)
- **O** Evaluate the multisum: easy just need a linearly hom. scheme
- ② Apply the activation function: depends on the function
- Bootstrap: can be costly
- **9** Repeat for all the layers

$$\operatorname{Enc}^{*}\left(f\left(\sum_{i}w_{i}x_{i}\right)\right)$$





- Evaluate the multisum: easy just need a linearly hom. scheme
- Apply the activation function: depends on the function
- **Bootstrap:** can be costly
- Repeat for all the layers

Issues:

• Choose the message space: guess, statistics, or worst-case





- Evaluate the multisum: easy just need a linearly hom. scheme
- Apply the activation function: depends on the function
- **Bootstrap:** can be costly
- Repeat for all the layers

Issues:

- Choose the message space: guess, statistics, or worst-case
- The noise grows: need to start from a very small noise





- Evaluate the multisum: easy just need a linearly hom. scheme
- ② Apply the activation function: depends on the function
- **Bootstrap:** can be costly
- Repeat for all the layers

Issues:

- Choose the message space: guess, statistics, or worst-case
- The noise grows: need to start from a very small noise
- How do we apply the activation function homomorphically?





Combine bootstrapping & activation function:

# $\mathsf{Enc}\left(x\right)\to\mathsf{Enc}^{*}\left(f\left(x\right)\right)$





### Basic idea: activate during bootstrapping





Michele Minelli



### Basic idea: activate during bootstrapping



Two steps:

• Compute the multisum  $\sum_i w_i x_i$ 



### Basic idea: activate during bootstrapping



Two steps:

- Compute the multisum  $\sum_i w_i x_i$
- Ø Bootstrap to the activated value





## TFHE: a framework for faster bootstrapping [CGGI16,CGGI17]

**Basic assumption:** learning with errors (LWE) over the torus

 $(\mathbf{a}, \ \boldsymbol{b} = \langle \mathbf{s}, \mathbf{a} \rangle + \boldsymbol{e} \mod 1) \ \stackrel{\boldsymbol{c}}{\approx} \ (\mathbf{a}, \ \mathbf{u}), \qquad \boldsymbol{e} \leftarrow \chi_{\alpha}, \ \mathbf{s} \leftarrow \$ \{0, 1\}^n, \ \mathbf{a}, \mathbf{u} \leftarrow \$ \mathbb{T}^n.$ 





 $\mathbb{T} \coloneqq \mathbb{R}/\mathbb{Z}$ 

## TFHE: a framework for faster bootstrapping [CGGI16,CGGI17]

Basic assumption: learning with errors (LWE) over the torus

 $(\mathbf{a}, \ b = \langle \mathbf{s}, \mathbf{a} \rangle + e \mod 1) \stackrel{c}{\approx} (\mathbf{a}, \ \mathbf{u}), \qquad e \leftarrow \chi_{\alpha}, \ \mathbf{s} \leftarrow \$ \{0, 1\}^n, \ \mathbf{a}, \mathbf{u} \leftarrow \$ \mathbb{T}^n.$ 

| Scheme | Message    | Ciphertext        |
|--------|------------|-------------------|
| LWE    | scalar     | (n+1) scalars     |
| TLWE   | polynomial | (k+1) polynomials |





 $\mathbb{T} \coloneqq \mathbb{R}/\mathbb{Z}$ 

## TFHE: a framework for faster bootstrapping [CGGI16,CGGI17]

Basic assumption: learning with errors (LWE) over the torus

 $(\mathbf{a}, \ \boldsymbol{b} = \langle \mathbf{s}, \mathbf{a} \rangle + \boldsymbol{e} \mod 1) \stackrel{\boldsymbol{c}}{\approx} (\mathbf{a}, \ \mathbf{u}), \qquad \boldsymbol{e} \leftarrow \chi_{\alpha}, \ \mathbf{s} \leftarrow \$ \{0, 1\}^n, \ \mathbf{a}, \mathbf{u} \leftarrow \$ \mathbb{T}^n.$ 

| Scheme | Message    | Ciphertext        |
|--------|------------|-------------------|
| LWE    | scalar     | (n+1) scalars     |
| TLWE   | polynomial | (k+1) polynomials |

Overview of the bootstrapping procedure:

- Hom. compute  $X^{b-\langle \mathbf{s}, \mathbf{a} \rangle}$ : spin the wheel
- Pick the ciphertext pointed to by the arrow
- Switch back to the original key





 $\mathbb{T} \coloneqq \mathbb{R}/\mathbb{Z}$ 



## Our activation function

We focus on  $f(x) = \operatorname{sign}(x)$ .





## Our activation function

We focus on  $f(x) = \operatorname{sign}(x)$ .





Michele Minelli



#### Reducing bandwidth usage

Oynamically changing the message space





#### Reducing bandwidth usage

Oynamically changing the message space

Standard packing technique: encrypt a polynomial instead of a scalar.

$$\mathit{ct} = \mathsf{TLWE}.\mathsf{Encrypt}\left(\sum_i \mathit{p}_i \, \mathit{X}^i
ight)$$





### Reducing bandwidth usage

Oynamically changing the message space

Standard packing technique: encrypt a polynomial instead of a scalar.

$$ct = \mathsf{TLWE}.\mathsf{Encrypt}\left(\sum_{i} p_{i} X^{i}\right)$$

Same thing for weights (in the clear) in the first hidden layer:  $w_{pol} := \sum_i w_i X^{-i}$ .



### Reducing bandwidth usage

Oynamically changing the message space

Standard packing technique: encrypt a polynomial instead of a scalar.

$$\mathit{ct} = \mathsf{TLWE}.\mathsf{Encrypt}\left(\sum_i \mathit{p}_i \, \mathit{X}^i
ight)$$

Same thing for weights (in the clear) in the first hidden layer:  $w_{pol} := \sum_i w_i X^{-i}$ .

The constant term of  $ct \cdot w_{pol}$  is then  $Enc(\sum_i w_i x_i)$ .





#### Reducing bandwidth usage

Oynamically changing the message space



Michele Minelli 12 / 16



#### Reducing bandwidth usage

Oynamically changing the message space

Fact We can keep the msg space constant (bound on all multisums).





#### Reducing bandwidth usage

Oynamically changing the message space

Fact We can keep the msg space constant (bound on all multisums).

Better idea Change the msg space to reduce errors. Intuition: less slices when we do not need them.





#### Reducing bandwidth usage

Oynamically changing the message space

Fact We can keep the msg space constant (bound on all multisums).

Better idea Change the msg space to reduce errors. Intuition: less slices when we do not need them.

How Details in the paper. Quick intuition: change what we put in the wheel.





#### Reducing bandwidth usage

Oynamically changing the message space

Fact We can keep the msg space constant (bound on all multisums).

Better idea Change the msg space to reduce errors. Intuition: less slices when we do not need them.

How Details in the paper. Quick intuition: change what we put in the wheel.

#### Bottom line

We can start with any message space at encryption time, and change it dynamically during the bootstrapping.









Michele Minelli 13 / 16







Michele Minelli 13 / 16













Michele Minelli 13 / 16



Michele Minelli 13 / 16



PSI 😿













Michele Minelli





Michele Minelli







Michele Minelli








## Overview of the process







Michele Minelli

### Experimental results

#### On inputs in the clear

|             | Original NN $(\mathbb{R})$ | DiNN + hard_sigmoid | DiNN + sign     |  |
|-------------|----------------------------|---------------------|-----------------|--|
| 30 neurons  | 94.76%                     | 93.76% (-1%)        | 93.55% (-1.21%) |  |
| 100 neurons | 96.75%                     | 96.62% (-0.13%)     | 96.43% (-0.32%) |  |

#### On encrypted inputs

|        | Accur. | Disag.        | Wrong BS     | Disag. (wrong BS) | Time    |
|--------|--------|---------------|--------------|-------------------|---------|
| 30 or  | 93.71% | 273 (105–121) | 3383/300000  | 196/273           | 0.515 s |
| 30 un  | 93.46% | 270 (119–110) | 2912/300000  | 164/270           | 0.491 s |
| 100 or | 96.26% | 127 (61–44)   | 9088/1000000 | 105/127           | 1.679 s |
| 100 un | 96.35% | 150 (66–58)   | 7452/1000000 | 99/150            | 1.64 s  |
|        |        |               |              |                   |         |

 ${\sf or}={\sf original}\qquad {\sf un}={\sf unfolded}$ 





### Experimental results

#### On inputs in the clear

|             | Original NN $(\mathbb{R})$ | DiNN + hard_sigmoid | DiNN + sign            |  |
|-------------|----------------------------|---------------------|------------------------|--|
| 30 neurons  | 94.76%                     | 93.76% (-1%)        | 93.55% (-1.21%)        |  |
| 100 neurons | 96.75%                     | 96.62% (-0.13%)     | <b>96.43%</b> (-0.32%) |  |

#### On encrypted inputs

|        | Accur. | Disag.        | Wrong BS     | Disag. (wrong BS) | Time    |
|--------|--------|---------------|--------------|-------------------|---------|
| 30 or  | 93.71% | 273 (105–121) | 3383/300000  | 196/273           | 0.515 s |
| 30 un  | 93.46% | 270 (119–110) | 2912/300000  | 164/270           | 0.491 s |
| 100 or | 96.26% | 127 (61–44)   | 9088/1000000 | 105/127           | 1.679 s |
| 100 un | 96.35% | 150 (66–58)   | 7452/1000000 | 99/150            | 1.64 s  |

 ${\sf or}={\sf original}\qquad {\sf un}={\sf unfolded}$ 





|              | Neurons | Size of ct. | Accuracy | Time enc   | Time eval | Time dec    |
|--------------|---------|-------------|----------|------------|-----------|-------------|
| FHE-DiNN 30  | 30      | 8.0 kB      | 93.71%   | 0.000168 s | 0.49 s    | 0.0000106 s |
| FHE-DiNN 100 | 100     | 8.0 kB      | 96.35%   | 0.000168 s | 1.65 s    | 0.0000106 s |





|              | Neurons | Size of ct.                   | Accuracy | Time enc   | Time eval | Time dec         |
|--------------|---------|-------------------------------|----------|------------|-----------|------------------|
| FHE-DiNN 30  | 30      | 8.0 kB                        | 93.71%   | 0.000168 s | 0.49 s    | 0.0000106 s      |
| FHE-DiNN 100 | 100     | 8.0 kB                        | 96.35%   | 0.000168 s | 1.65 s    | 0.0000106 s      |
|              |         | independent of<br>the network |          |            |           | $\left[ \right]$ |



**CRYPTO**EXPERTS

|              | Neurons | Size of ct. | Accuracy | Time enc   | Time eval          | Time dec    |
|--------------|---------|-------------|----------|------------|--------------------|-------------|
| FHE-DiNN 30  | 30      | 8.0 kB      | 93.71%   | 0.000168 s | 0.49 s             | 0.0000106 s |
| FHE-DiNN 100 | 100     | 8.0 kB      | 96.35%   | 0.000168 s | 1.65 s             | 0.0000106 s |
|              |         |             |          |            | scales<br>linearly |             |





• Build better DiNNs: more attention to the conversion (+ retraining)





- Build better DiNNs: more attention to the conversion (+ retraining)
- Implement on GPU to have realistic timings





- Build better DiNNs: more attention to the conversion (+ retraining)
- Implement on GPU to have realistic timings
- More models (e.g., convolutional NNs) and machine learning problems





- Build better DiNNs: more attention to the conversion (+ retraining)
- Implement on GPU to have realistic timings
- More models (e.g., convolutional NNs) and machine learning problems

#### Research needed

We need a fast way to evaluate other, more complex, functions (e.g., max or ReLU<sup>a</sup>).

 $\operatorname{\mathsf{PReLU}}(x) = \max(0, x)$ 





- Build better DiNNs: more attention to the conversion (+ retraining)
- Implement on GPU to have realistic timings
- More models (e.g., convolutional NNs) and machine learning problems

#### Research needed

We need a fast way to evaluate other, more complex, functions (e.g., max or ReLU<sup>a</sup>).

 $\operatorname{\mathsf{PReLU}}(x) = \max(0, x)$ 

# Thank you for your attention! Questions?



